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ABSTRACT

As convection-allowing ensembles are routinely used to forecast the evolution of severe thunderstorms,

developing an understanding of storm-scale predictability is critical. Using a full-physics numerical weather

prediction (NWP) framework, the sensitivity of ensemble forecasts of supercells to initial condition (IC)

uncertainty is investigated using a perfect model assumption. Three cases are used from the real-time NSSL

Experimental Warn-on-Forecast System for Ensembles (NEWS-e) from the 2016 NOAA Hazardous

Weather Testbed Spring Forecasting Experiment. The forecast sensitivity to IC uncertainty is assessed by

repeating the simulations with the initial ensemble perturbations reduced to 50% and 25% of their original

magnitudes. The object-oriented analysis focuses on significant supercell features, including themid- and low-

level mesocyclone, and rainfall. For a comprehensive analysis, supercell location and amplitude predictability

of the aforementioned features are evaluated separately.

For all examined features and cases, forecast spread is greatly reducedbyhalving the IC spread.By reducing the IC

spread from 50% to 25% of the original magnitude, forecast spread is still substantially reduced in two of the three

cases. The practical predictability limit (PPL), or the lead time beyond which the forecast spread exceeds some

prechosen threshold, is case and feature dependent. Comparing to past studies reveals that practical predictability of

supercells is substantially improved by initializing once storms are well established in the ensemble analysis.

1. Introduction

With convection-allowing ensembles in operational use,

it is critical to understand storm-scale predictability. Be-

yond assessing predictability limits, predictability studies

are also important for evaluating and comparing the im-

pacts of different forecast error sources [e.g., initial con-

dition (IC) uncertainty, coarse IC resolution, and model

error]. Understanding the impacts of various error sources

can guide our priorities for storm-scale modeling system

design. For example, Potvin et al. (2017) found modeled

supercells are relatively insensitive to IC resolution, with

missing scales ,10km regenerating in 10–20min. These

results promote using a dual-resolution ensemble, in which

analyses are generated on a coarse grid and then down-

scaled onto a finer grid for forecast initialization. In this

study, we choose to investigate the sensitivity of ensemble

forecasts of supercells to IC spread.

Traditionally, atmospheric predictability is divided

into two domains: intrinsic and practical. Intrinsic pre-

dictability is defined as the extent to which prediction is

possible given an optimal procedure and infinitesimal IC

errors, while practical predictability is the extent to

which prediction is possible given the best-known pro-

cedures and contemporary IC errors or those expected

in the foreseeable future (Lorenz 1969, 1996; Melhauser

and Zhang 2012). Unlike intrinsic predictability,
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practical predictability is largely determined by cur-

rent (or future) observing networks and modeling

systems (which are highly imperfect). First proposed

in Lorenz (1969), the practical predictability limit

(PPL) is defined as ‘‘the time interval within which the

errors in prediction do not exceed some prechosen

magnitude.’’

Since storm-scale numerical weather prediction

(NWP) was first proposed (e.g., Lilly 1990), several

studies have explored the sensitivity of explicit forecasts

of severe thunderstorms to IC uncertainty (McPherson

and Droegemeier 1991; Droegemeier and Levit 1993;

Wandishin et al. 2008, 2010; Potvin and Wicker 2013;

Cintineo and Stensrud 2013 (hereafter CS13); Durran

and Weyn 2016; Zhang et al. 2015, 2016; Miglietta et al.

2016, 2017; Weyn and Durran 2017). Early studies by

McPherson and Droegemeier (1991) and Droegemeier

and Levit (1993) evaluated the sensitivity of idealized

simulations of supercells and supercells versus multi-

cellular thunderstorms, respectively, to the characteris-

tics of the thermal bubble used for storm initiation.

More recently, Potvin and Wicker (2013) used an ide-

alized observing system simulation experiment (OSSE)

framework to perform ensemble Kalman filter (EnKF)

radar data assimilation and prediction of supercells.

They found that useful probabilistic guidance of low-

level rotation, a proxy for tornado potential, is possible

out to at least 30–60min. CS13 compared Rapid Update

Cycle (RUC) model forecast soundings to observed

soundings to estimate mesoscale analysis error. These

errors were then used to construct an ensemble of

soundings that were used to initialize an ensemble of

simulations. This ensemble allowed examination of the

sensitivity of supercell forecasts to contemporary IC

uncertainty. They found storm location based on the

40-dBZ contour is more predictable than midlevel me-

socyclone location, while 5-min heavy rainfall location

and cold pool area are virtually unpredictable. Zhang

et al. (2015, 2016) explored the practical and intrinsic

predictability of the 20 May 2013 tornadic supercells.

Zhang et al. (2015) found the timing of convection initi-

ation (CI) is strongly modulated by the planetary

boundary layer (PBL) evolution, which is sensitive to the

initialization time and local topography. Using an en-

semble generated from small-magnitude perturbations,

Zhang et al. (2016) found the intrinsic predictability limit

of the event to be 3–6h. Exploring the predictability of a

supercell that formed over northern Italy, Miglietta et al.

(2016) found that due to strong orographic effects, large-

scale forcing and initialization time had a substantial

impact on rainfall, while the results were fairly insensitive

to choice of PBL parameterization. Miglietta et al. (2017)

showed that in the Mediterranean, predictability can be

extended when topographic features are responsible for

the triggering of supercells.

There are three general limitations of previous super-

cell predictability studies that can be improved upon to

increase the scientific and operational relevance of the

diagnosed PPLs. First, ensembles in past studies were

generated by shifting the initialization time (e.g., Zhang

et al. 2015; Miglietta et al. 2016) or introducing quasi-

random perturbations (e.g., CS13) onto a control state.

None of these studies, however, featured fully flow-

dependent IC errors across all scales. Since storm

predictability is governed by both upscale growth of in-

trastorm errors (e.g., Zhang et al. 2007, 2016) and

downscale growth of larger-scale errors (e.g., Durran and

Gingrich 2014; Durran and Weyn 2016), the IC pertur-

bations used in this study are obtained from storm-scale

ensemble analyses generated by an EnKF on amesoscale

domain. Second, past studies have primarily focused on

initialization prior to CI. In this study, however, we are

working within the Warn-on-Forecast (WoF) paradigm

(e.g., Stensrud et al. 2009, 2013), where forecasts are only

seriously considered once storms have existed long

enough to have been well assimilated. Our study, there-

fore, assesses the predictability of storms already estab-

lished in the EnKF analyses. Assimilating real radar,

satellite, and surface data to initialize our ensemble

forecasts also providesmore realistic simulations than the

idealized frameworks of some previous studies (e.g.,

CS13; Potvin and Wicker 2013). Third, investigations of

storm predictability ought to account for the discrete,

object-like nature of storm-scale phenomena. Traditional

root-mean-square differences (RMSDs) calculated be-

tween two nearly identical forecasts can be heavily pe-

nalized by operationally insignificant phase errors.

Focusing on continuous fields (e.g., of temperature or

wind; Zhang et al. 2015, 2016) rather than on storm fea-

tures (e.g., midlevel mesocyclone) also limits the appli-

cability of the results to operational forecasting and to

advancing conceptual understanding of storm pre-

dictability. This is especially true when errors are com-

puted over domains dominated by storm-free regions,

since themuch slower error growth in the latter mutes the

signal of the intrastorm error growth in the domain-wide

calculations. Thus, using an approach similar toCS13, this

study will evaluate the practical predictability of indi-

vidual supercell features.

The rest of the paper is organized as follows. Section 2

discusses our model configuration, the process of re-

ducing IC spread in a preexisting ensemble, quantifica-

tion of the PPL, and the three cases used. The practical

predictability of supercells given current and reduced

magnitudes of IC uncertainty that will potentially be

achieved in the future is explored in section 3. Section 4
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presents a summary of the results, as well as limitations

of the study and recommendations for future work.

2. Methods

a. NEWS-e

The ICs and lateral boundary conditions (LBCs) for our

simulations are from the NSSL Experimental WoF Sys-

tem for ensembles (NEWS-e; Wheatley et al. 2015; Jones

et al. 2016) analyses, generated in real time during the 2016

Hazardous Weather Testbed Spring Forecasting Experi-

ment. The NEWS-e is a high-spatiotemporal-resolution

ensemble data assimilation and prediction system

nested within the experimental 3-km High-Resolution

Rapid Refresh Ensemble (HRRRE;Dowell et al. 2016).

NEWS-e consists of 36 WRF-ARW (Skamarock et al.

2008) ensemble members with physical parameteriza-

tion diversity [see Wheatley et al.’s (2015) Table 2 for

PBL and radiation schemes used] run over a 250 3 250

gridpoint domain with a 3-km horizontal grid spacing.

The domain is daily recentered on the region of greatest

severe weather potential. The NEWS-e is initialized

daily at 1800 UTC with ICs and LBCs provided by the

HRRRE. After initialization, radar, satellite, mesonet

(when available), and other conventional observations

are assimilated every 15min using the ensemble ad-

justment Kalman filter (Anderson 2001) included in the

DataAssimilation Research Testbed (DART) software.

To evaluate the performance of the radar data assimi-

lation in the three cases used (see below), we used the

consistency ratio (Dowell et al. 2004), which is the ratio of

the sum of the prescribed observation error variance and

ensemble forecast error variance to the ensemble forecast

root-mean-square innovation (RMSI). Consistency ratios

near unity suggest nearly optimal ensemble spread. In all

three cases, the consistency ratio for radar reflectivity is

around 1.0 6 0.4 (Figs. 1a–c), similar to results in

Wheatley et al. (2015). For radial velocity (Figs. 1d–f), the

values are slightly higher, falling in a similar range as

found in Wheatley et al. (2015). The radial velocity con-

sistency ratio for 16 May is near 2.5 for the first several

assimilation cycles, presumably due to the lack of radar

observations in the NEWS-e domain. However, as soon

as storms enter the domain around 2200 UTC and the

number of observations increases, the consistency ratio is

dramatically reduced. The values of the consistency ratio

suggest reasonable ensemble spread is obtained by the

initialization times used in our experiments.

A common problem for storm-scale data assimilation

is ensemble underdispersion. Figure 2 shows vertical

profiles of initial spread in the 3-km ensemble analyses

for the three cases. TheRUCanalyses errors in CS13 (cf.

1-h RUC errors in their Fig. 1) are comparable for rel-

ative humidity, but horizontal wind spread is noticeably

larger. This is probably due to the much greater influ-

ence of storms (and attendant much larger U and V) in

the NEWS-e versus RUC. Temperature spread is

smaller in the NEWS-e, but it is conceivable that the

desired initial temperature spread has been reduced due

to inclusion of mesonet, radar, and satellite observations

in the NEWS-e system. Ultimately, we argue that the

NEWS-e spread in these cases is reasonable, as in-

dicated by the radar consistency ratios and loose con-

sistency with the 1-h RUC errors.

FIG. 1. Consistency ratios (calculated using ensemble priors) during the radar data assimilation period for (a),(d) 9; (b),(e) 16; and

(c),(f) 24 May. The top and bottom rows are for radar reflectivity and radial velocity, respectively. Vertical dashed lines indicate the

initialization time used in this study for all three cases.
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b. Model configuration

The numerical model used is the WRF-ARW version

3.6.1. We use one-way nested domains of 3- and 1-km

grid spacing with 51 vertical levels, 11 of which are in the

lowest 2 km above ground level (AGL). The 3-km grid

has 2503 250 grid points, while the 1-km domain size is

case dependent (Table 1). A 1-km grid spacing has been

used in past supercell predictability studies (e.g., CS13;

Zhang et al. 2015, 2016; Miglietta et al. 2016) and is a

reasonable compromise between available computing

resources and the ability of the model to represent

essential physical processes for supercell prediction,

such as the mid- and low-level mesocyclone (e.g.,

Potvin and Flora 2015). To isolate the sensitivity of

ensemble forecast spread to IC uncertainty, a perfect

model assumption is adopted, which requires a single

set of physics be used in our simulations. We use the

following parameterization schemes: Thompson mi-

crophysics (Thompson et al. 2008), MM5 similarity

surface layer (Zhang and Anthes 1982), RUC land

FIG. 2. Vertical profiles of level-average initial ensemble spread in relative humidity (%),

temperature (K), and horizontal wind components (m s21)U andV for 9 (black), 16 (red), and

24 May (blue) on the 3-km grid.
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surface model (Smirnova et al. 1997, 2000), Mellor–

Yamada–Nakanishi–Niino (MYNN) level-3.0 PBL

(Nakanishi and Niino 2006), RRTM longwave radia-

tion (Mlawer et al. 1997), and Dudhia shortwave radiation

(Dudhia 1989). Our simulations are integrated for

3 h with the initialization time differing from case to

case with model output every 5min. The WRF Model

prognostic variables include the three wind components

(u, y, and w), perturbation potential temperature, pertur-

bation geopotential height, perturbation surface pressure

of dry air, and (from the Thompson scheme) mixing ratios

of water vapor, ice, rain, graupel, snow, and cloud water

and number concentration of cloud ice and rain.

c. Reducing initial condition spread

Reducing IC spread in a preexisting ensemble re-

quires collapsing each ensemble member toward a

single deterministic state. The ensemble mean, which is

supposed to be the best estimate of the true state, is

an obvious option for this deterministic state. Un-

fortunately, the ensemble mean tends to be unrealisti-

cally smooth, especially within storms, due to phase

TABLE 1. Number of grid points in the north–south (NY) and west–

east (NX) directions for the 1-km grid.

NY NX

9 May 196 226

16 May 211 391

24 May 220 253

FIG. 3. Ensemble-mean mixed layer (lowest 75 hPa) CAPE (filled contour), ensemble-mean

0–3-km SRH (m2 s22; black contours), and the control member 30-dBZ reflectivity at 1.5 km

AGL (green contours) are shown for (a) 9, (b) 24, and (c) 16May. The yellow arrows denote the

subjectively defined storm inflow region for the primary storm of interest for the three cases.

Approximate dryline and stationary front position shown by dashed brown curve and red and

blue dashed curves, respectively.
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differences among the ensemble members. Rather than

use the ensemble mean, we selected a control member

from the 36-member ensemble that met the following

criteria, listed from highest to lowest priority:

1) Small deviation of environment from initial

ensemble-mean temperature, 3D wind, and water

vapor mixing ratio.

2) Early storm evolution (e.g., first 30min) close to

ensemble-mean evolution.

3) Storm remains relatively isolated and survives

through the end of the 3-h simulation.

The member that best matched the observations is not

automatically chosen as the control simulation for two

reasons. First, closely replicating the observed evolution

of a particular event is not necessary for a general

investigation of predictability. Second, the ensemble

forecasts deviated from the observations in all three

cases, an expected consequence of biases in theNEWS-e

analyses and the model. Since the control member must

remain close to the ensemble mean to ensure the

remaining members do not become unduly offset from

the control (which would impede interpretation of the

results), minimizing the deviation of the control from

the ensemble (not observations) was the higher priority.

To evaluate the performance of the ensemble forecasts,

the control member evolution is taken as truth.

To generate the ensemble perturbations, the control

member state variables fields are subtracted from each

ensemble member state over the entire 3D domain. The

resulting perturbations are then reduced to 50% and

25% of their original magnitudes. The reduced pertur-

bations are next added to the control member state to

generate new ensembles with reduced IC spread. Fi-

nally, each reduced-spread ensemble analysis is down-

scaled to the 1-km grid. To clarify, we are simulating the

effect of reducing current storm-scale IC uncertainty

through improvement in the observation network and/

or model, and not an artificial reduction in IC spread

with no corresponding improvements in ensemble data

assimilation. For example, the 50% experiments repre-

sent the forecast spread evolution that would occur if

contemporary storm-scale IC spread were halved.

TABLE 2. Various bulk parameters qualitatively derived from

a subjectively defined storm inflow region on the 3-km grid.

9 May 16 May 24 May

CAPE (J kg21) 1800 1500–1800 1000–1500

CIN (J kg21) 275 2200 2100

0–1-km shear (m s21) 10 11–14 11–14

0–6-km shear (m s21) ,20 36 36–39

0–1-km SRH (m2 s22) 120 200–250 200

SFC Td (8F) 60–64 56–64 45–48

FIG. 4. Control member reflectivity (dBZ) at 1.5 km AGL at t 5 0, 60, and 120min for (a)–(c) 9, (d)–(f) 16, and (g)–(i) 24 May.
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Therefore, the risk of forecast underdispersion does not

increase as IC spread is decreased in our experiments.

d. Measuring predictability

Since Lorenz (1969) initially proposed a definition for

the PPL (see section 1), no universal quantitative defi-

nition has been established, which is unsurprising, given

that the optimal choice of error threshold is application

dependent. Therefore, we have adopted PPL criteria

from previous studies, as well as novel criteria that are

particularly appropriate for severe thunderstorm fore-

casting. The two main PPL criteria are based on en-

semble spread and probability, while an additional

criterion, ensemble bias, is used primarily to evaluate

causes of limited practical predictability.

Traditionally, in an ensemble framework, predictability

is evaluated by measuring evolution of ensemble spread,

where rapid growth of spread is associated with poor

predictability. The twomost commonmetrics, RMSD and

standard deviation, both measure deviation from some

defined state. In the case of standard deviation, the state is

the ensemble mean. In the case of the RMSD, this state is

more generally defined; in our application, it is the control

member. Although the ensemble mean and control

member are initially similar (as required by our con-

trol member selection process), they diverge substantially

during their forecasts in some experiments, causingRMSD

to be heavily influenced by ensemble bias (relative to the

control member), which is undesirable since we wish to

separately measure spread and bias. Given that storm-

scale ensemble perturbations can be highly non-Gaussian,

we considered that standard deviation may likewise not

be a robust measure of spread. However, for all storm

attributes examined in this study, the ensemble perturba-

tions are sufficientlyGaussian for the standard deviation to

generally well represent the ensemble spread. Therefore,

we adopt standard deviation from the ensemble mean as

our spread metric. Ensemble spread, however, was not

evaluated in whole, but separated into two components:

phase and amplitude spread. For this study, phase spread

represents the degree of storm location uncertainty, de-

fined by spread in location of maximum UH, while am-

plitude spread represents the degree of uncertainty in the

maximum value of a storm variable. This allowed us to

separately consider the predictability limits of the storm

location and the amplitudes of selected features.

FIG. 5. The 2–5-km AGL UH spread swaths maximized in a 20-km-radius neighborhood (filled contours) with probability-matched

mean contoured (black lines; thick line5 700m2 s22 with a contour interval of 300m2 s22) for (a)–(c) 9, (d)–(f) 16, and (g)–(i) 24 May for

the (a),(d),(g) 100%, (b),(e),(h) 50%, and (c),(f),(i) 25% experiments. Yellow lines show approximate timing of ensemble every 60min

after initial 30min. The 300m2 s22 control member isoline is overlaid in blue for each case. Map scale shown in (d) is valid for all plots.
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Although ensemble spread is traditionally used to

evaluate predictability in studies, an additional useful

metric for forecast operations is the ensemble proba-

bility of exceedance for a storm attribute. In general, the

probability of exceedance is the number of ensemble

members exceeding some threshold divided by the total

number of ensemble members. In CS13, loss of practical

predictability is considered to occur once domain-

maximum probability of exceedance falls below 60%.

We adopt a similar definition for the PPL in this study,

except the probability exceedance threshold is varied

among 30%, 50%, and 70%. However, unlike CS13, the

probability of exceedance in this study is calculated

within a 3-km-radius neighborhood to mitigate the ef-

fects of operationally tolerable storm location errors.

This type of ensemble probability is referred to as the

neighborhood maximum ensemble probability (NMEP;

Schwartz and Sobash 2017).

Finally, a novel criterion for evaluating practical

predictability in this study is bias. For this study,

bias refers to the difference between the control

member and ensemble mean for a given variable.

If the magnitude of the forecast bias substantially

increases as the IC perturbations are increased,

then this may indicate poor practical predictability.

As will be shown, contemporary analysis uncer-

tainty can lead to premature storm demise in some

experiments (a bifurcation in the ensemble forecast),

which introduces bias and greatly limits the practical

predictability.

FIG. 6. (left) Time series of the ensemble standard deviation in maximum UH within a 20-min window for (a) 9,

(b) 16, and (c) 24 May. (right) Ensemble-mean maximum UH within a 20-min window for (d) 9, (e) 16, and

(f) 24 May (no additional time smoothing). The 100% ensembles, 50% ensembles, 25% ensembles, and control

member time series are black, red, blue, and magenta, respectively.
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e. Three supercell cases

Anticipating that the predictability of supercell evolu-

tion is case dependent, we performed experiments for

three different 2016 events using NEWS-e analyses valid

at 2200 UTC 9 May, 0100 UTC 17 May, and 0000 UTC

25 May. Using the local time (CST) to identify the date,

these cases are hereafter labeled 9 May, 16 May,

and 24 May, respectively. The thermodynamic and

kinematic characteristics vary substantially across the

three cases (Fig. 3 and Table 2). The 9 May environ-

ment (Fig. 3a) is moderately unstable, with 1800 J kg21

of ensemble-mean mixed layer CAPE with the weakest

low-level wind profile of the three cases. The 16 May

environment (Fig. 3c) is also moderately unstable, but

the 0–3-km storm-relative helicity (SRH) is significantly

stronger than in the 9May case with substantial deep layer

shear as well. Finally, the 24 May environment (Fig. 3b) is

marginally to moderately unstable (e.g., 1000Jkg21 of

CAPE), with a relatively dry boundary layer (e.g., surface

dewpoint temperature between 458 and 488F), substantial
low- and deep-level wind shear, and strong 0–3-km SRH.

The evolution of 1.5km AGL reflectivity for all three

control simulations is presented in Fig. 4. In all three cases,

supercells are present in the initial conditions. The 9 May

simulation (Figs. 4a–c) features a right-moving supercell

initially surrounded by secondary, weaker storms, but

eventually becoming isolated. In the 16 May case

(Figs. 4d–f), there is a large heavy precipitation (HP) su-

percell that maintains many supercell characteristics, al-

though it is steadily transitioning upscale. For example,

there is a persistent hook echo signature, which ismasked at

times by convection initiated off the gust front. Finally, in

the 24 May case, there is a relatively isolated right-moving

supercell with a strong hook echo signature (Figs. 4g–i).

3. Results

a. Updraft helicity

The feature that best distinguishes supercells from

other convective modes is the deep, quasi-steady ro-

tating updraft known as the midlevel mesocyclone.

Midlevel updraft helicity (UH), the most common

parameter for detecting midlevel mesocyclones and char-

acterizing their intensity, is defined as

UH5

ðzt
zb

wz dz , (1)

where w is vertical velocity (ms21), z is vertical vorticity

(s21), and zb and zt are heights AGL, typically set (in-

cluding in this study) to 2 and 5km, respectively. Figure 5

shows time-maximum UH amplitude spread (hereafter

referred to as spread swaths) with probability-matched

mean1 (Ebert 2001) UH contours overlaid for all

three cases. To isolate amplitude spread by eliminat-

ing phase errors, maximum UH is computed within a

large 20-km-radius neighborhood for each member.

FIG. 7. The 300m2 s22 UH isolines (gray) for the 9 May

(a) 100%, (b) 50%, and (c) 25% experiments with the control

member overlaid in blue. Yellow lines show approximate timing of

ensemble every 60min after initial 30min.

1 To obtain the probability matched mean, forecast values for all

n ensemble members for the entire domain are pooled together,

ranked from greatest to smallest, then every nth value is extracted

to produce an array of ranked ensemble member values. The

values of the ensemble-mean forecast are also ranked fromgreatest

to smallest, but with the spatial location of each value stored along

with its rank. Finally, the grid point with the highest ensemble-

mean value is assigned the highest value from the distribution of

ensemble members, and so on.
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This neighborhood is based on Fig. 8, which shows that

20kmwas the maximum ensemble-average displacement

from the ensemble-mean storm location for all three ca-

ses. The resulting spread swaths are slightly smoothed,

and, for illustration purposes, the probability-matched

mean contours are heavily smoothed to focus on the

general evolution of the ensemble.Aswe can see inFig. 5,

reducing IC spread greatly reduces the UH amplitude

spread in all three cases. In the 9 and 16 May cases

(Figs. 5a–c, d–f), the UH amplitude spread continues to

benefit from reductions in IC spread, with large decreases

between both the 100% and 50% and 50% and 25%

experiments. However, in the 24 May case (Figs. 5g–i),

the 100%, 50%, and 25% experiments all have similar

spread toward the end of the simulation. The diminishing

returns in the 24 May case may indicate the intrinsic

predictability limit is being approached prior to the end of

the simulation. Finally, the UH amplitude spread in the

16 May case was less than half that in the other cases,

suggesting it may be the most predictable case. Recall

that the 9 and 24 May supercells are fairly discrete and

isolated, while the 16May supercell is steadily organizing

on larger scales as it grows upscale. Therefore, the 16May

supercell is likely inheriting the greater predictability of

the larger scales, as opposed to the other two cases, which

results in a slower forecast spread growth.

Although forecast spread is generally reduced by de-

creasing the IC spread, forecast spread in some parts of

the 9 and 24 May domains did increase. For example,

after 150min in the 9 May case, the spread in the 50%

experiment is greater than that in the 100% experiment

(cf. Figs. 5a and 5b). This is related to premature storm

demise in the 100% experiment, which manifests as a

substantially smaller probability-matched mean UH

value in the 100% ensemble. Therefore, as the storm

lifetime is lengthened in the 50% experiment, compared

to the 100% experiment, so is the spread growth time. In

the 24 May case, the spread in the 25% experiment

(Fig. 5i) is greater than in the 50% experiment (Fig. 5h)

after 90min. In this case, the primary storm of interest is

impacted by an upstream secondary storm that forms

in its wake. This implies that the amplitude spread in

the last 30min is muddled by the influence of the

secondary storm; this is verified upon closer in-

spection (not shown).

To further examine UH amplitude spread, Fig. 6

shows time series of spread in domain-maximum UH,

with the mean domain-maximum UH shown for ref-

erence. To avoid the influence of secondary storms,

maximum values are only extracted from within a sub-

jectively drawn polygon based on the ensemble mem-

bers’ UH isolines for the primary storm (not shown).

FIG. 8. (top) Time series of the ensemble-average distance from the ensemble-mean storm location (i.e., maximum UH) for (a) 9, (b) 16, and

(c) 24May. (bottom)Time series of the distance between the ensemblemean and controlmember storm location for (d) 9, (e) 16, and (f) 24May.
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To limit the impact of relatively minor timing errors and

focus on the longer-term spread evolution, values of

domain-maximum UH were computed within a 20-min

window, and the resulting curves were averaged using

the same window. As we can see in Fig. 6, only the

24 May case (Fig. 6c) experiences diminishing returns,

which is consistent with spread swaths above. To dem-

onstrate the principle of diagnosing the amplitude PPL,

we arbitrarily select an amplitude spread threshold of

UH 5 500m2 s22 then determine the forecast lead time

at which this threshold is exceeded in the 100% en-

sembles. The appropriateness of the UH 5 500m2 s22

will vary with event and application. However, we con-

sider this a reasonable choice for the purpose of illus-

tration. For example, given a fixed, mean vertical

vorticity of 1022 s21 and mean vertical velocity of

30ms21 with a spread of 20ms21 (which distinguishes

between strong and weak storms), the corresponding

spread in UH is 600m2 s22. In the 9 and 24 May cases

(Figs. 6a,c), the amplitude PPL is approximately 50 and

90min, respectively. While the amplitude spread in both

cases drops below the UH 5 500m2 s22 threshold later

in the forecast, this is related to the premature storm

demise in 9 May and general storm demise in 24 May,

which can be seen in the dramatic decrease of the 100%

experiment ensemble-mean domain-maximum UH

(Figs. 6d,f). As for the 16May case, the PPL threshold is

never met, so the amplitude PPL limit is beyond 3h,

according to our criteria.

FIG. 9. As in Fig. 5, but for NMEP of UH . 300m2 s22 (filled contour) within a 3-km-radius neighborhood.

FIG. 10. Timeswhen domain-maximumNMEPofUH. 300m2 s22

drops below 70%, 50%, and 30% for 9 (solid green), 16 (solid red), and

24May (solid blue). Lead time gained with a 50% IC spread reduction

shown in translucent colors.
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To qualitatively examine UH location spread, Fig. 7

shows 300m2 s22 isolines2 for the 9 May case. As the IC

spread is decreased, the contours collapse toward the

control member forecast, indicating location spread and

bias are being substantially reduced. The 100% and 50%

experiments are not substantially different from each

other (cf. Figs. 7a and 7b), but the location spread is

greatly reduced in the 25% experiment (Fig. 7c). For the

other two cases, the location spread is greatly reduced

with a 50% IC spread reduction (not shown).

To quantify the UH location uncertainty, we plotted

time series of ensemble-average distance from the

ensemble-mean maximum UH location for each case

(Fig. 8). In the 100% experiment for all three cases, it

takes approximately 90–100min before the location

uncertainty exceeds 10 km. With a 50% IC spread re-

duction, the time before the location uncertainty ex-

ceeds 10 km is extended by 30–40min in the 9 and

24 May cases, while in the 16 May case, the location

uncertainty never exceeds 10 km. Nowcasting tech-

niques, such as extrapolation and Bunkers motion

(Bunkers et al. 2000), were used as baselines for super-

cell location prediction, but due to the unusually large

phase errors they produced, the results were not shown.

In the case of Bunkers motion, the large phase errors

were due to the sensitivity of the calculation near frontal

boundaries, which was noted in Bunkers et al. (2000).

Both amplitude and location spread are useful statis-

tics for describing forecast uncertainty, but NMEP can

be most easily applied to operations. Figure 9 shows the

NMEP of UH . 300m2 s22 in a 3-km-radius neighbor-

hood for all three cases. The neighborhood is employed

to limit the impact of tolerable phase errors from re-

ducing NMEP values. In the 9 and 24 May cases

(Figs. 9a–c and 9g–i), the NMEP is substantially im-

proved by reducing IC spread. As for the 16 May case

(Figs. 9d–f), the NMEP in the 100% ensemble is already

very large, leaving little room for improvements in the

50% and 25% experiments. Using the CS13 definition

presented in section 2d, but varying the domain-

maximum NMEP threshold, Fig. 10 shows PPLs di-

agnosed from the 100% experiments, as well as the lead

time increase with a 50% IC spread reduction. The PPLs

for 9 and 24 May are quite similar for all probability

thresholds, while the PPLs in 16 May are noticeably

longer. With a 50% IC spread reduction, the PPL in-

creased, on average, by 45min across the three cases and

probability thresholds of 70% and 50%, signifying that

the PPL would be considerably lengthened if model and

observational improvements reduced typical storm-

scale analysis uncertainty by half.

To compare our results with CS13, we computed time

series of domain-maximum probability of midlevel

UH . 50m2 s22 with no neighborhood, allowing us to

compare to their Fig. 14 (Fig. 11). The most comparable

results are the 1-h error forecasts since our initial spread

profiles are similar to their 1-h error profiles (cf. our

Fig. 2 with their Fig. 1). As we can see in Fig. 11, the lead

time when probabilities fall below 60% is case de-

pendent and ranges between 65 and 135min. In two of

the three cases, the PPL is nearly triple the 1-h error

FIG. 11. (a) Figure 14 from CS13; time series of the domain-maximum frequency of UH . 50m2 s22 for all 100

runs perturbedwith 1-, 2-, and 3-h environmental forecast errors. (b) Time series of domain-maximum frequency of

UH . 50m2 s22 in our 100% experiments (with no neighborhood to be consistent with CS13).

2 Past studies have used 50 and 180m2 s22 (e.g., CS13; Zhang

et al. 2015, 2016) for a 1-km grid. However, assuming vertical

velocity and vorticity within the mesocyclone are O(10) m s21 and

O(1022) s21, respectively, between 2 and 5 kmAGL, then based on

Eq. (1), 300m2 s22 is a fairly appropriate threshold for a mature

supercell on a 1-km grid.
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limit in CS13 (40min). Given the similarity between the

initial spread profiles, if the three case studies presented

here are representative, then initializing forecasts post-

CI rather than 1h prior to CI appears to significantly

improve supercell practical predictability.

A novel criterion for practical predictability in this

study is ensemble bias. Figure 12 shows time series of

UH ensemble bias for all three cases. Of the three cases,

9 May (Fig. 12a) has the largest difference in bias be-

tween the 100% and 25% experiments, especially in the

last hour of the simulation. This is because some en-

semble members did not sustain a supercell throughout

the 3-h period. In a sense, 9 May is the least predictable

case, since IC perturbations consistent with current

analysis uncertainty led to a critical bifurcation in the

ensemble. However, with a 50% IC spread reduction, the

bias in the 9 May case is substantially reduced after

140min. The bias is also reduced in the 16 and 24 May

cases (Figs. 12b,c), with reductions in IC spread re-

duction. Toward the end of the forecast period, the bias

dramatically increased in some of the ensembles in all

three cases, but this is due to interactions of secondary

storms with the primary storm of interest. Overall, if

current IC spread is reduced by 50%–75% in the future,

then both forecast spread and bias will be substantially

reduced.

b. Low-level vorticity

One primary role for probabilistic numerical guid-

ance in the severe weather warning process is improving

tornado forecasts (Stensrud et al. 2009, 2013). Since

operational model resolutions are far from resolving

tornadoes, model proxies such as maximum low-level

(0–2 km AGL) vorticity (LLV) are used to assess tor-

nado potential (e.g., Potvin and Wicker 2013; Wheatley

et al. 2015; Jones et al. 2016; Yussouf et al. 2015, 2016).

The utility of LLV as a tornado proxy, particularly at

grid spacings fine enough to begin resolving low-level

mesocyclones, stems largely from the fact that nearly

half of observed low-level mesocyclones produce a tor-

nado (Trapp et al. 2005). Given the importance of LLV

forecasts to assessing tornado potential, it is surprising

that the predictability of LLV has largely been neglected

in past supercell predictability studies.

In the 16 and 24 May cases, the low-level mesocy-

clones are intense and long-lived (not shown). However,

in the 9 May case, the low-level mesocyclone is slightly

weaker than in those two cases with two distinct in-

tensification periods. Thus, the 9 May ensemble pro-

vides insight into the predictability of supercells with

marginal tornadic potential. Figures 13a–c show that

LLV forecast spread is greatly reduced by IC spread

reductions with diminishing returns occurring only in

the last 20–30min of the simulation. Although it is not

shown, the forecast bias is also reduced by reducing the

IC spread. Furthermore, by reducing the IC spread, the

NMEP of LLV3 exceeding 0.015 s21 was substantially

increased where the control member LLV exceeds

0.015 s21 (Figs. 13d–f). Forecasts of the initial low-level

FIG. 12. Time series of the absolute difference between the

maximumUHof the ensemblemean and control member for (a) 9,

(b) 16, and (c) 24 May. The time series are averaged over a 20-min

window to facilitate interpretation.

3 Assuming solid-body vortex is an appropriate approximation

for a low-level mesocyclone, then given an average tangential ve-

locity between 5 and 10m s21 (i.e., 7.5m s21) and a radius of 1 km,

then z5 2VT /R5 0:015 s21.
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mesocyclone intensification are greatly improved by a

50% IC spread reduction, with modest improvements in

forecasts of the second intensification (cf. Figs. 13d

and 13e). In the 25% experiment, the probabilities

are further increased relative to the 50% experiment

in the forecasts of the initial intensification period,

with a substantial improvement in the forecasts of the

latter intensification period. Using different domain-

maximum NMEP thresholds, Fig. 14 shows the LLV

PPLs for each case, as well as the increase in the PPL

with a 50% IC spread reduction. The PPLs are case

dependent, with the 9 May PPL noticeably shorter than

in the other two cases. This is because the initial low-

level mesocyclone intensification ends around 60min,

and a 50% reduction in IC spread is necessary to capture

the latter intensification. Using a slightly lower LLV

threshold for the low-level mesocyclone in the NMEP

(i.e., 0.01 s21) for 9 May, the PPLs were extended on

average by 50min, making themmore like the other two

cases (not shown). The substantial forecast improve-

ments gained by 50% IC spread reduction suggest that

tornado prediction out to 3-h lead times could greatly

benefit from a realizable reduction in current analysis

uncertainty.

FIG. 13. Ensemble forecasts of 0–2-km AGL maximum LLV for the 9 May (a),(d) 100%; (b),(e) 50%; and

(c),(f) 25% experiments. (left) LLV spread swaths maximized in a 20-km-radius neighborhood (filled contours)

with probability-matched mean contoured (black lines; thick line5 0.012 s21 with a contour interval of 0.003 s21).

Yellow lines show approximate timing of ensemble every 60min after initial 30min. (right) NMEP of LLV .
0.015 s21 (filled contour) within a 3-km-radius neighborhood. The 0.015 s21 control member isoline is overlaid in

blue for each column.
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c. Rainfall

Thehourly rainfall for the three cases variedwidely. The

9 May ensemble produced, on average, 0.5 in. (12.7mm)

after the first 90min, while the 16May ensemble exceeded

well over 2 in. (50.8mm) throughout the forecast period

(not shown). In the 24 May case, heavier hourly rainfall is

produced, but there is poor agreement among the mem-

bers in the 100% experiment. As we can see in Figs. 15a

and 15d, the spread in hourly accumulated rainfall for the

24 May case is nearly 0.5 in., while the NMEP of hourly

rainfall .0.75 in. (19.05mm), a representative threshold

for heavier rainfall in all three cases, is 40%–50%. Nev-

ertheless, forecast spread is greatly reduced between both

the 100% and 50% and the 50% and 25% experiments

(Figs. 15a–c). These spread reductions arose in part from a

substantial decrease in location uncertainty, which lead

to a large increase in NMEP of hourly rainfall .0.75 in.

(shown in Figs. 15d–f) and the collapse of.0.75-in. hourly

rainfall isolines about the control member (not shown).

Closer inspection (not shown) reveals that this strong

sensitivity of rainfall forecast uncertainty to IC spread

arises largely from differences in storm motion between

ensemble members, which leads to differences in both the

paths of heaviest rainfall and the duration of heavy rainfall

at a given location. Moreover, rainfall predictability in the

24 May 100% experiment is limited not just by consider-

able location uncertainty, but also by large forecast bias

(Figs. 15g–i), which is nearly 1 in. (25.4mm) throughout

the forecast period. Consistent with the results above,

FIG. 14. As in Fig. 10, but for domain-maximum NMEP of maxi-

mum LLV . 0.015 s21.

FIG. 15. Ensemble forecasts of hourly accumulated rainfall for the 24 May (a),(d),(g) 100%; (b),(e),(h) 50%; and (c),(f),(i) 25% ex-

periments. (left)Hourly accumulated rainfall spread swathsmaximized in a 20-km-radius neighborhood (filled contours) with probability-

matched mean contoured (black lines; thick line 5 0.5 in. with a contour interval of 0.25 in.). (middle) NMEP of hourly accumulated

rainfall. 0.75 in. (filled contour) within a 3-km-radius neighborhood. (right) Swath of ensemble bias in hourly accumulated rainfall bias.

The 0.75-in. control member isoline is overlaid in blue for each column.
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however, the forecast bias in hourly rainfall in the 24 May

case is substantially reduced by reducing the IC spread.

Reducing IC uncertainty also substantially decreased

forecast uncertainty of heavy rainfall location in the

16 May case (not shown). The 9 May control simulation

produced relatively light rainfall; reducing IC spread cor-

rectly lowered the NMEP (not shown). For thresholds of

0.75 and 1.0 in., the maximum NMEP for all three cases

never falls below 70% within the 3h in the 100% experi-

ments (not shown), making a 50% IC spread reduction

practically unnecessary.

Figure 16 shows time series of spread in maximum

5-min rainfall, as well as mean maximum 5-min rainfall

for all three cases. In the 24 May case, there is consid-

erable overlap of the spread curves, consistent with the

other supercell features for this case. Overall, the mag-

nitude and growth rate of spread is similar among the

three cases (cf. Figs. 16a–c). The small amplitude spread

and large location spread in our experiments is consis-

tent with past studies where location errors contributed

more than amplitude errors to rainfall forecast un-

certainty (e.g., Park 1999; Yussouf et al. 2016).

4. Conclusions

Developing a suitable full-physics NWP framework

for studying storm-scale predictability is a necessary step

for assessing the capabilities of storm-scale ensembles

and for understanding the relative importance of dif-

ferent sources of forecast errors. The method developed

herein enables systematic evaluation of the impact of IC

uncertainty on ensuing forecasts of supercells, while

leveraging the added realism (relative to idealized ex-

periments) of storms, their environments, and analysis

errors therein provided by contemporary convection-

allowing ensembles. Even if the NEWS-e analyses used

FIG. 16. As in Fig. 6, but for 5-min maximum rainfall.
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in this study are underdispersed, despite evidence to the

contrary (see Fig. 1), the experiments still serve to illus-

trate the effects of reducing IC spread. In addition, our

focus on supercell features rather than traditional point-

based metrics increases the interpretability and opera-

tional relevance of our results. Using this framework, we

assess the practical predictability of the updraft helicity

(primarily associated with the midlevel mesocyclone),

low-level vorticity (a proxy for tornado potential), and

rainfall over multiple cases. The IC spread is alternately

set to 100%, 50%, and 25% of that in the real-world

EnKF analyses from which our ensembles are initialized.

This allows us to estimate contributions to forecast errors

of contemporary and future analysis uncertainty.

Our major findings are as follows:

d Practical predictability of supercells is case and

feature dependent.
d Practical predictability in the 100% experiments was

substantially limited by forecast storm location un-

certainty and ensemble bifurcations in forecast storm

intensity.
d Reducing IC spread by 50% produced substantial

reductions in forecast spread for all evaluated super-

cell features. Thus, severe thunderstorm, flash flood,

and tornado warnings should be considerably im-

proved if and when current storm-scale analysis un-

certainty is halved.
d Further decreasing the IC spread to 25% of the

original magnitude produced additional reductions

in forecast spread in two of the three cases.
d Initializing supercell forecasts after the storms are

well established in the ensemble analysis substantially

improves their practical predictability.
d Rainfall predictability appears to be more heavily

degraded by phase errors than are the predictabilities

of the low- and midlevel mesocyclones.

To isolate the sensitivity of forecast spread to IC

spread, we have adopted a perfect-model assumption in

this study. In practice, however, model errors often

produce large biases in ensemble forecasts. In addition,

to account for model uncertainty in operational en-

sembles, physics diversity and/or stochastic physics

schemes are often used, causing ensemble spread to in-

crease faster than in our experiments. It follows that the

PPLs diagnosed in this study are an upper-bound esti-

mate of those for real ensemble systems. Our frame-

work, therefore, can be used to set realistic limitations

on expectations for the performance of real-world en-

semble prediction systems. Furthermore, while it is un-

clear how literally the practical predictability increases

gained by reducing IC spread in our experiments

translate into real-world, imperfect-model ensembles,

our results (and any future results leveraging the

framework developed herein) provide valuable quali-

tative guidance for ensemble system design.

There are at least three major limitations of this study

that should be addressed in future work. First, given that

supercell predictability is case dependent,more casesmust

be investigated to produce general conclusions. All cases

in this study are from the central Great Plains, which

limits a direct application of the results to environments in

other parts of the country, such as the low-CAPE envi-

ronments that often occur in the southeastern United

States during early spring. Second, all three supercell

events were associated with fairly active large-scale pat-

terns. We argued in section 3a that large-scale forcing

enhanced 16May’s predictability, but it may be enhancing

the predictability in the other two cases as well. Third, the

predictability of other important supercell features, such

as hail and the cold pool, are not investigated here. Hail

is a frequently high-impact supercell hazard, and the

cold pool is a critical factor in supercell longevity

and tornado genesis, maintenance, and decay. In-

vestigating the predictability of these and other su-

percell features would, therefore, provide additional

valuable guidance for storm-scale ensemble design.
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